$0,85 \times 1259700$

 $P_{u} = \frac{1}{3,5 + \left[\frac{0.85 \times 1259700 \times 2100}{2 \times 2826 \times 364060,43}\right]^{0.5}}$ = 235568,99247 kg = 235,569 Ton

Berdasarkan persamaan (6), diperoleh kapasitas daya dukung ultimit menurut metode *Danish* yaitu sebesar 235,569 Ton. Perhitungan daya dukung berdasarkan kalendering lapangan dengan mengambil 1 titik tiang pancang pada *area* A1 *point* no.10 yang dapat dilihat pada lampiran.

Perhitungan Daya Dukung Lateral Tiang Pancang berdasarkan Metode Broms

Perhitungan dilakukan dengan tahap berikut :

1) Cek perilaku tiang dan hitung faktor kekakuan tiang

 $T = \left(\frac{EI}{n_h}\right)^{1/5}$ (7) dengan E = modulus elastis tiang = 4700 $\sqrt{fc'}$ (kN/m²), I = momen inersia tiang = $\frac{1}{64}\pi D^4$ (m⁴), n_h = koefisien variasi modulus tanah, D = lebar atau diameter tiang (m).

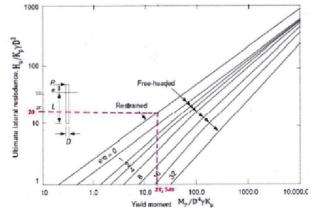
$$T = \sqrt[5]{\frac{36.406.043 \times 0.0063585}{11779}} = 1.814 \text{ m}$$

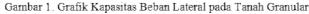
L > 4 T

21 m ≥ 7,256 m (jenis tiang pancang dikategorikan tiang panjang/elastic pile)

2) Cek keruntuhan tiang akibat momen lentur maksimum tiang

$$H_{u} = \frac{2M_{y}}{e+0.54\sqrt{\frac{H_{u}}{\gamma D K_{p}}}}$$


(8)


dengan H_a = beban lateral (kN), K_p = koefisien tekanan tanah pasif = $\tan^2(45^\circ + \emptyset/2)$, M_y = momen ultimit (kN-m) (diperoleh dari tabel spesifikasi tiang pancang produksi WIKA Beton), D = diameter tiang (m), f = jarak momen maksimum dari permukaan tanah (m), γ = berat isi tanah (kN/m³), e = jarak beban lateral dari permukaan tanah (m) = 0.

 $H_{u} = \frac{2(170)}{0+0.54\sqrt{\frac{H_{u}}{11(0.6)(4.705)}}} = 230,900 \text{ kN} = 23,09 \text{ Ton}$

Beban ijin lateral H = $\frac{230,900}{2,5}$ = 92,36 kN = 9,236 Ton

3) Cek terhadap grafik hubungan $M_y/D^4\gamma Kp$ dan $H_u/D^3\gamma Kp$ (Gambar 1).

Tahanan momen ultimit = $\frac{170}{(0.6)^4(11)(4.705)} = 25,345$

Nilai 25,345 diplot ke grafik di atas, sehingga diperoleh tahanan lateral ultimit sebesar 20.

 $\begin{array}{l} 20 = \frac{H_u}{11 \times 0.6^3 \times 4.705} \\ H_u = 223,582 \ kN = 22,358 \ Ton \\ H = \frac{223,582}{2.5} \qquad = 89,433 \ kN = 8,943 \ Ton \\ Hasil yang diperoleh dengan cara analitis tidak berbeda jauh dengan cara grafis. \end{array}$

Perhitungan Penurunan Elastis Tiang Tunggal

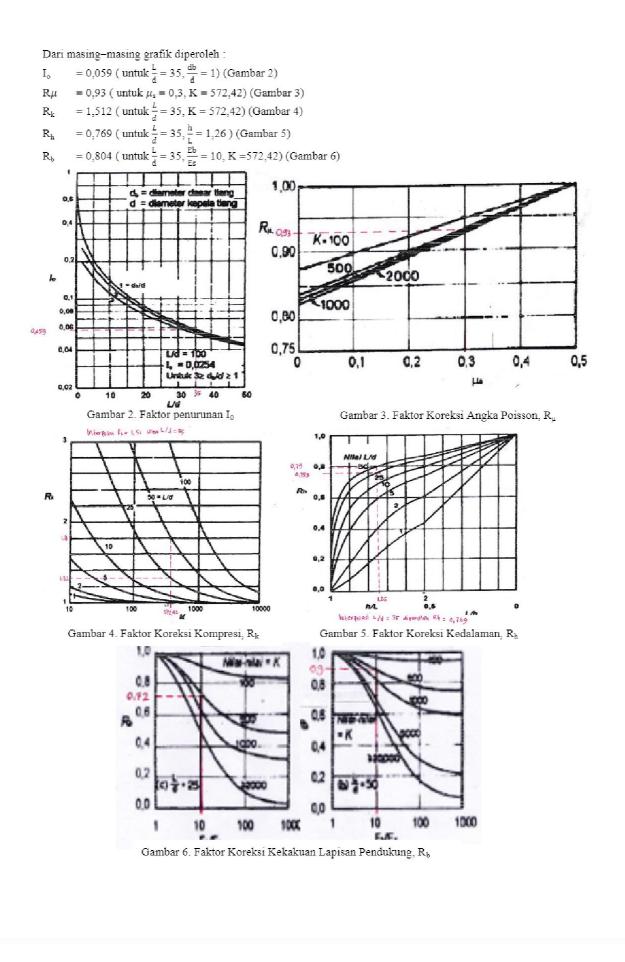
Penurunan Tiang Tunggal dengan Rumus Poulus – Davis
a. Tiang apung atau friksi

 $S = \frac{QI}{E_{s,D}}$ Dimana : $I = I_0 \cdot R_k \cdot R_h \cdot R_\mu$ (9)

b. Untuk tiang dukung ujung

 $S = \frac{Q.I}{E_{s,D}}$ (11) Dimana :

 $I = I_0 \cdot R_k \cdot R_b \cdot R_\mu \tag{12}$


dengan Q = besar beban yang bekerja (kg),D = diameter tiang (cm), $E_s = modulus$ elastisitas tanah (kg/cm²), $I_0 =$ faktor pengaruh penurunan tiang yang tidak mudah mampat (*Incompressible*) dalam massa semi tak terhingga, $R\mu =$ faktor koreksi angka poisson untuk $\mu=0,3$, Rk = faktor koreksi kemudahmampatan tiang, Rh = faktor koreksi untuk ketebalan lapisan yang terletak pada tanah, Rb = faktor koreksi untuk kekakuan lapisan pendukung.

K adalah suatu ukuran kompressibilitas relatif dari tiang dan tanah yang dinyatakan oleh persamaan :

 $K = \frac{E_p \cdot R_a}{E_s}$ (13) Dimana : $R_a = \frac{A_p}{\frac{1}{2}\pi D^2}$ (14)

dengan K = faktor kekakuan tiang, $E_{\rm p}$ = modulus elastisitas dari bahan tiang (kN/m²), $E_{\rm s}$ = modulus elastisitas tanah di asar tiang (kN/m²), $E_{\rm b}$ = modulus elastisitas tanah di dasar tiang (kN/m²).

 q_e untuk pasir, $q_e = 4N$. Pada kedalaman 22,45 nilai N = 53, maka $q_e = 4 \ge 53 = 212 \text{ kg/cm}^2 = 21,2 \text{ Mpa.}$ Modulus elastisitas di sekitar tiang (Es) dapat dihitung dengan : $E_e = 3$. 212 kg/cm² = 636 kg/cm² = 63,6 Mpa Menentukan modulus elastisitas tanah di dasar tiang : $E_b = 10.63,6$ Mpa = 636 Mpa Menentukan modulus elastisitas dari bahan tiang : $E_p = 4700 \cdot \sqrt{60} = 36.406,043$ Mpa $R_a = \frac{2826 \text{ cm}}{2826 \text{ cm}} = 1,0$ Menentukan faktor kekakuan tiang : $K = \frac{36.406,043 \cdot 1.0}{63,6} = 572,42$ Untuk $\frac{db}{d} = \frac{60}{60} = 1$, diameter ujung dan atas sama besarnya. Untuk $\frac{L}{d} = \frac{2100}{60} = 35$

